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Abstract
We develop a generic representation-independent contraction procedure for
obtaining, for instance, Rh matrices and L operators of arbitrary dimensions
for the quantized super-Jordanian Uh(osp(1|2)) algebra from the pertinent
quantities of the standard q-deformed Uq(osp(1|2)) algebra.

PACS number: 02.20.Uw
Mathematics Subject Classification: 17B37, 81R50

1. Introduction

Quantum deformations of the Lie superalgebra osp(1|2) have been studied extensively [1–7]
both from the point of view of investigating integrable physical models, and also because of
their intrinsic mathematical importance. Distinct bialgebra structures existing on the classical
osp(1|2) superalgebra have been studied [4]. The Lie superalgebra osp(1|2) has three even
(h, b±) and two odd (e, f ) generators, which obey the commutation relations

[h, e] = e [h, f ] = −f {e, f } = −h

[h, b±] = ±2b± [b+, b−] = h (1.1)

[b+, f ] = e [b−, e] = f b+ = e2 b− = −f 2.

5 Laboratoire de recherche agrée par le MESRS dans le cadre du fond national de la recherche et du developpement
technologique.
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The classical r-matrix containing an odd generator

r = h ∧ b+ − e ∧ e (1.2)

has recently been quantized [5] using nonlinear basis elements. The corresponding
quantized super-Jordanian Uh(osp(1|2)) algebra is known [5, 6] to satisfy the triangularity
condition. Various differential geometric structures on the noncommutative super-Jordanian
Funh(OSp(1|2)) function algebra have been constructed [7]. An important issue observed [3]
in this context is that the quantum Rh matrix of the Uh(osp(1|2)) algebra in the fundamental
representation may be obtained via a contraction mechanism from the corresponding Rq matrix
of the standard q-deformed Uq(osp(1|2)) algebra in the q → 1 limit. A generalization of this
contraction procedure for arbitrary representations, though clearly desirable as it will allow
us to systematically obtain various quantities of interest of the Uh(osp(1|2)) algebra from the
corresponding quantities of the Uq(osp(1|2)) algebra, has not been achieved so far.

On the other hand, a generic technic developed earlier [8–10] allowed us to extract the
quantum R and T matrices of arbitrary representations of the Jordanian Uh(sl(N)) algebra from
the corresponding operators of the q-deformedUq(sl(N)) algebra. A suitable adaptation of this
procedure is used in section 2 to obtain the quantum Rh matrices of arbitrary representations,
and the L operator of the super-Jordanian Uh(osp(1|2)) algebra. The L operator obtained here
immediately produces, via the standard FRT [11] procedure, the Hopf structure of the Borel
subalgebra of the Uh(osp(1|2)) algebra. This agrees with the known result [5] proving the
validity of our contraction scheme. Our method may be readily used to derive the quantum
Th matrices of arbitrary representations of the Uh(osp(1|2)) algebra.

2. Contraction process

The Hopf structure of the super-JordanianUh(osp(1|2)) algebra using nonlinear basis elements
was obtained [5] previously. For comparing with our subsequent results we list it, with a
slightly altered normalization, as

[H,E] = 1

2
(T + T −1)E [H,F ] = −1

4
(T + T −1)F − 1

4
F(T + T −1)

{E,F } = −H [H, T ±1] = T ±2 − 1

[H,Y ] = −1

2
(T + T −1)Y − 1

2
Y (T + T −1) − h

4
E(T − T −1)F − h

4
F(T − T −1)E

[T ±1, Y ] = ±h

2
(T ±1H + HT ±1) E2 = T − T −1

2h
F 2 = −Y

[T ±1, F ] = ±hT ±1E [Y,E] = 1

4
(T + T −1)F +

1

4
F(T + T −1) (2.1)

�(H) = H ⊗ T −1 + T ⊗ H + hET 1/2 ⊗ ET −1/2 �(E) = E ⊗ T −1/2 + T 1/2 ⊗ E

�(F) = F ⊗ T −1/2 + T 1/2 ⊗ F �(T ±1) = T ±1 ⊗ T ±1

�(Y) = Y ⊗ T −1 + T ⊗ Y +
h

2
ET 1/2 ⊗ T −1/2F +

h

2
T 1/2F ⊗ ET −1/2

ε(H) = ε(E) = ε(F ) = ε(Y ) = 0 ε(T ±1) = 1

S(H) = −H − hE2 S(E) = −E S(F) = −F +
h

2
E

S(T ±1) = T ∓1 S(Y ) = −Y +
h

2
H +

h2

4
E2
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where h is the deformation parameter. TheUh(osp(1|2)) algebra has only one Borel subalgebra
generated by the elements (H,E, T ±1). Kulish observed [3] that the Rh matrix in the
fundamental representation of the super-Jordanian Uh(osp(1|2)) algebra may be obtained
via a transformation, singular in the q → 1 limit, from the corresponding Rq matrix in the
fundamental representation of the standard q-deformed Uq(osp(1|2)) algebra.

Our task is to generalize the above contraction procedure for arbitrary representations.
As an application of our contraction scheme, we construct the L operator corresponding to
the Borel subalgebra of the super-Jordanian Uh(osp(1|2)) algebra from the corresponding L
operator of the standard q-deformed Uq(osp(1|2)) algebra. To this end, we first quote some
well-known [1, 2] results on the Uq(osp(1|2)) algebra. The Uq(osp(1|2)) algebra is generated
by three elements (ĥ, ê, f̂ ) obeying the Hopf structure

[ĥ, ê] = ê [ĥ, f̂ ] = −f̂ {ê, f̂ } = −[h]q

�(ĥ) = ĥ ⊗ 1 + 1 ⊗ ĥ �(ê) = ê ⊗ q−ĥ/2 + qĥ/2 ⊗ ê �(f̂ ) = f̂ ⊗ q−ĥ/2 + qĥ/2 ⊗ f̂

ε(ĥ) = ε(ê) = ε(f̂ ) = 0 S(ĥ) = −ĥ S(ê) = −q−1/2ê S(f̂ ) = −q1/2f̂

(2.2)

where [x]q = (qx −q−x)/(q−q−1). To facilitate our later application, we choose the (4j +1)-
dimensional irreducible representation of the Uq(osp(1|2)) algebra in an asymmetrical manner
as follows:

ĥ|jm〉 = 2m|jm〉 ê|jm〉 = |jm + 1/2〉 ê|jj 〉 = 0

f̂ |jm〉 = −[j + m]q[[j − m + 1/2]]q |jm − 1/2〉 for j − m integer

= [[j + m]]q[j − m + 1/2]q |jm − 1/2〉 for j − m half-integer (2.3)

where [[x]]q = (qx − (−1)2xq−x)/(q1/2 + q−1/2), 2j ∈ N,m = j, j − 1/2, . . . ,−(j −
1/2),−j .

Following the strategy adopted earlier [8–10] for constructing the Jordanian deformation
of the sl(N) algebra, we give here the general recipe for obtaining the quantum R

j1;j2
h matrix

of an arbitrary representation of the Uh(osp(1|2)) algebra. An explicit demonstration is
given for the 1/2 ⊗ j representation. The relevant R

1/2;j
h matrix may be directly interpreted

as the L operator corresponding to the Borel subalgebra of the Uh(osp(1|2)) algebra. Our
construction may, obviously, be generalized for an arbitrary j1 ⊗ j2 representation. The
primary ingredient for our method is the R

1/2;j
q matrix [1] of the Uq(osp(1|2)) algebra in

the 1/2 ⊗ j representation. A suitable similarity transformation is performed on this R
1/2;j
q

matrix. The transforming matrix is singular in the q → 1 limit. For the transformed matrix,
the singularities, however, systematically cancel yielding a well-defined construction. The
transformed object, finite in the q → 1 limit, directly furnishes the R

1/2;j
h matrix for the

super-Jordanian Uh(osp(1|2)) algebra. Interpreting, as mentioned above, the R
1/2;j
h matrix

obtained here as the L operator corresponding to the Borel subalgebra of the Uh(osp(1|2))

algebra, we use the standard FRT procedure [11] for constructing the full Hopf structure of
the said Borel subalgebra.

The R
1/2;j
q matrix of the tensored 1/2⊗ j representation of the Uq(osp(1|2)) algebra may

be obtained from [1] as

R
1
2 ;j
q =




qĥ −ωqĥ/2f̂ −ω(1 + q−1)f̂
2

0 1 ωq−(ĥ+1)/2f̂

0 0 q−ĥ


 (2.4)

where ω = q − q−1. We now introduce a transforming matrix M, singular in the q → 1 limit,
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as

M = Eq2(ηê2) (2.5)

where

Eq2(x) =
∞∑

n=0

xn

[n]q2 !
η = h

q2 − 1
. (2.6)

For any finite value of j the series (2.6) may be terminated after setting ê4j+1 = 0. As
the transforming operator M in (2.5) depends only on the generator ê, our subsequent results
assume the simplest form for the asymmetric choice of the representation (2.3). Our contraction
scheme, however, remains valid independent of the choice of representation. The R

j1;j2
q matrix

of the Uq(osp(1|2)) algebra may now be subjected to a similarity transformation followed by
a limiting process:

R̃
j1;j2
h ≡ lim

q→1

[(
M−1

j1
⊗ M−1

j2

)
Rj1;j2

q

(
Mj1 ⊗ Mj2

)]
. (2.7)

In the following we will present explicit results for the operator R̃
1/2;j
h . In our calculation a

class of operators

T(α) = (Eq2(ηê2))−1Eq2(q2αηê2) (2.8)

satisfying

T(α+β)q
(α+β)ĥ = T(α)q

αĥT(β)q
βĥ (2.9)

play an important role. To evaluate the q → 1 limiting value of the operator T(α), we use the
identity

T(1) − T(−1) = η(q2 − q−2) ê2. (2.10)

Evaluating term by term, the limiting values of T(±1)|q→1(≡T̃(±1)) are found to be finite;
and for these finite operators the product structure (2.9) yields T̃(±α) = (T̃(±1))

α , where
T̃(α) = limq→1 T(α). Writing T̃(±1) = T̃ ±1 henceforth, we immediately observe that in the
q → 1 limit, the identity (2.10) assumes the form

T̃ − T̃ −1 = 2he2 	⇒ T̃ ±1 = ±he2 +
√

1 + h2e4. (2.11)

This is our crucial result. Two other operator identities playing key roles are listed below:

f̂ ê2n = ê2nf̂ − q

q + 1
{n}q2 ê2n−1 t̂ − 1

q + 1
{n}q−2 ê2n−1 t̂−1 (2.12)

f̂
2
ê2n = ê2nf̂

2
+ q

q − 1

q + 1
{n}q2 ê2n−1 t̂ f̂ − q−1 q − 1

q + 1
{n}q−2 ê2n−1 t̂−1f̂

+
q

q + 1

(
1

ω
{n}q4 − q2 q − 1

q + 1

{n

2

}
q2

)
ê2(n−1)t̂2

− 1

q + 1

(
1

ω
{n}q−4 − q−2 q − 1

q + 1

{n

2

}
q−2

)
ê2(n−1)t̂−2

− q

(q + 1)3
(q{n}q2 + {n}q−2)ê2(n−1) (2.13)

where {x}q = 1−qx

1−q
, {n}q! = {n}q{n − 1}q · · · {1}q, {0}q! = 1,

{n
m

}
q

= {n}q !
{n−m}q !{m}q ! and

t̂±1 = q±ĥ. Using the above identities systematically and passing to the limit q → 1, it
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follows in a representation-independent way that in our construction of the operator R̃
1/2;j
h via

(2.7), all singularities cancel yielding a well-defined answer

R̃
1
2 ;j
h =




T̃ hT̃
1
2 e −hH̃ + h

4 (T̃ − T̃ −1)

0 1 −hT̃ − 1
2 e

0 0 T̃ −1


 (2.14)

where H̃ = 1
2 (T̃ + T̃ −1)h =

√
1 + h2e4h. One way of interpreting (2.14) is to consider it

a recipe for obtaining the finite-dimensional Rh matrices of the Uh(osp(1|2)) algebra. For
instance, using the classical j = 1 representation, obtained from (2.3) in the q → 1 limit, we
obtain the R

1/2;1
h

(=R̃
1/2;1
h

)
matrix as follows:

R
1
2 ;1
h =




1 0 h 0 h2

2 0 h 0 h2

2 0 −2h 0 h2

2 0 h3

0 1 0 h 0 0 0 h 0 h2

2 0 −h 0 h2

2 0

0 0 1 0 h 0 0 0 h 0 0 0 0 0 h2

2
0 0 0 1 0 0 0 0 0 h 0 0 0 h 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 2h

0 0 0 0 0 1 0 0 0 0 0 −h 0 h2

2 0

0 0 0 0 0 0 1 0 0 0 0 0 −h 0 h2

2
0 0 0 0 0 0 0 1 0 0 0 0 0 −h 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 −h
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 −h 0 h2

2
0 0 0 0 0 0 0 0 0 0 0 1 0 −h 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 −h
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1




. (2.15)

Thus our contraction procedure allows us to construct quantum Rh matrices of arbitrary
dimensions from the corresponding Rq matrices.

The matrix (2.14) may also be interpreted as the L operator of the Uh(osp(1|2)) algebra.
To this end, we first use the following invertible map of the quantum Uh(osp(1|2)) algebra
(2.1) on the classical algebra (1.1):

E = e H = H̃ F = f +
h

4

(
T̃ − 1

T̃ + 1

)
e − h

2

(
T̃ − 1

T̃ + 1

)
eh T = T̃ Y = F 2.

(2.16)

The map (2.16) satisfies the algebraic relations (2.1); and the corresponding twist operator
may also be determined. Using the map (2.16) the operator (2.14) may be recast in terms of
the deformed generators of the super-Jordanian Uh(osp(1|2)) algebra as

L ≡ R̃
1
2 ;j
h =




T hT
1
2 E −hH + h

4 (T − T −1)

0 1 −hT − 1
2 E

0 0 T −1


 . (2.17)

The above L operator allows immediate construction of the full Hopf structure of the Borel
subalgebra of the Uh(osp(1|2)) algebra via the standard FRT formalism [11]. The algebraic
relations for the generators (H,E, T ±1) of the Borel subalgebra are given by

R
1
2 ; 1

2
h L1L2 = L2L1R

1
2 ; 1

2
h (2.18)
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where the Z2 graded tensor product has been used in defining the operators: L1 = L⊗I, L2 =
I ⊗ L. The coalgebraic properties of the said Borel subalgebra may be succinctly expressed
as

�(L) = L ⊗̇ L ε(L) = I S(L) = L−1 (2.19)

where L−1 is given by

L−1 =




T −1 −hT − 1
2 E hH + h

4 (T − T −1)

0 1 hT
1
2 E

0 0 T


 . (2.20)

This completes our construction of the Hopf structure of the Borel subalgebra of the super-
Jordanian Uh(osp(1|2)) algebra by employing the contraction scheme described earlier. Our
results fully coincide with the Hopf structure given in (2.1). This validates our contraction
scheme elaborated before. An ansatz for the L operator of the Uh(osp(1|2)) algebra was
previously given in [3]. However, our method of obtaining the L operator of the Uh(osp(1|2))

algebra from the R
1/2;j
q matrix (2.4) by using the contraction transformation discussed above

was not observed in [3]. Our recipe (2.7) for obtaining the R
j1;j2
h matrix for a j1 ⊗ j2

representation of the super-Jordanian Uh(osp(1|2)) algebra may be continued arbitrarily. The
matrices such as R

1;j
h may be interpreted as higher-dimensional L operators [12] obeying

duality relations with the relevant T matrices. An arbitrary Tj
h matrix of the super-Jordanian

function algebra Funh(OSp(1|2)) may be obtained from the corresponding standard Tj
q matrix

of the Funq(OSp(1|2)) algebra by using our contraction transformation

Tj
h = lim

q→1

[
M−1

j Tj
qMj

]
. (2.21)

3. Conclusion

Generalizing the approach in [3], we, in this paper, have found a generic representation-
independent way of extracting various structures such as arbitrary finite-dimensional Rh

matrices and L operators of the super-Jordanian Uh(osp(1|2)) algebra from the corresponding
quantities of the standard q-deformed Uq(osp(1|2)) algebra. One way to understand our
contraction process defined in (2.7) is that it projects out elements of one Borel subalgebra
generated by (h, e) from the classical U(osp(1|2)) algebra. The existence [5] of the invertible
maps connecting Uh(osp(1|2)) and U(osp(1|2)) algebras now provides a construction of the
triangular super-Jordanian Uh(osp(1|2)) algebra from the q-deformed Uq(osp(1|2)) algebra.
Our approach may also be fruitfully used, for instance, to obtain the higher dimensional Tj

h

matrices. In particular, the noncommutative space covariant under the coaction of the T(j=1)
h

matrix is of interest. This will be discussed elsewhere.
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